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Abstract

In order to support quality of service, many network operators continue to rely on connection oriented technologies,

even as their networks migrate towards packet switching. Such technologies can allocate resources according to user

requirements, with path stability providing low jitter for real-time services. CBR/VBR traffic classes in ATM networks

fall within the connection oriented paradigm, as do Traffic Engineering initiatives such as CR-LDP and RSVP-TE

protocols (from the IETF�s MPLS working group). As the capacities of network links increase, network switches/
routers will need to support signaling loads that grow in proportion to these increases in bandwidth. However the

capacity of such elements to process connection setup and teardown requests may not grow as quickly as transmission

bandwidth. The resulting congestion in the connection control plane leads to delays in connection setup (and, in

extreme cases, to setup failures). In response, next-generation switch vendors have implemented various connection-

caching schemes. Despite this motivation, the problem of how to design an effective caching scheme appears to be little-

studied in the literature. In this paper we propose a dynamic connection caching strategy which achieves a trade-off

between bandwidth utilization and decreased signaling load. The proposed scheme is based on the optimal policy for a

Markov decision process; this Markov decision process models the dynamics of caching policies on a single link. We

extend the single-link approach to the network context. Simulations show that the proposed mechanism is robust and

effective at reducing the signaling load without significantly decreasing throughput. The simulation scenarios feature

network topologies that are appropriate for softswitch telephony, thereby demonstrating the applicability of our ap-

proach in this context.
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1. Introduction

We study the effectiveness of connection cach-

ing as a means of reducing signaling load in tele-

communication networks. Signaling load is our
term for the tasks involved in setting up and

tearing down connections. If the processing re-

sources that perform these tasks are overloaded,

deleterious effects on system performance result:

• delays in setup/teardown procedures increase to

the point that industry-standard delay require-

ments are not met, and
• setup/teardown procedures may fail altogether.

While it eases signaling load, caching exacts a toll

in terms of throughput; wewish to quantify this cost

and to shed light on some interesting trade-offs.

Our model does not explicitly include connec-

tion setup delay. In view of the above observa-

tions, our model uses signaling load as a proxy for
delay. Our focus is on bandwidth allocation; the

notion of effective bandwidth can be used to treat

variable bit rate traffic types within our modeling

framework.

It is important to point out a major difference

between connection caching and route caching.

Although the latter addresses delay associated

with route computation, it does nothing to reduce
signaling overhead for setup and teardown pro-

cedures. Since our main motivation in this paper is

to reduce signaling load, we cannot overemphasize

this crucial distinction.

Organization of the paper. After detailing our

motivation, we formulate a Markov decision

process (MDP) model that describes the dynamics

of a single link with a state-dependent caching
policy. We discuss a numerical implementation of

policy iteration; based on our results, we propose a

linear dynamic caching heuristic that appears to be

near-optimal for the single-link case. Finally, we

validate the efficacy of this heuristic with simula-

tion results in the single link and network contexts.

1.1. Motivation

As mentioned in the abstract, operators prefer

to employ connection oriented technologies for

real-time services: path stability provides low jitter

as well as a familiar paradigm for operations, ad-

ministration and maintenance. Note that connec-

tion caching schemes could be combined with

arrangements in which there is more than one call

per connection, and therefore do not preclude such
multi-call arrangements. In the same vein, ATM

Adaptation Layer 2 (AAL2) deployments may

feature AAL2 switching/subcell multiplexing

nodes which experience heavy signaling load even

though switches that function only at the ATM

layer are unaffected by setups and teardowns

happening within the AAL2 layer.

For our purposes, a telecommunication net-
work is a set of switches connected by transmission

links. A switch has the capacity to direct traffic

from any input link to any output link. A con-

nection is a collection of resources (such as trans-

mission capacity) allocated to a specific user at

various points in the network.

In our model, software on the network explic-

itly allocates/deallocates resources as connection
requests arrive, are served, and are then com-

pleted. Signaling is the process by which system

software accomplishes this goal. Connection setup

is the allocation process that takes place when an

arriving call request is accepted. Connection tear-

down is the process of returning allocated re-

sources to the available pool once a call has

completed. A schematic representation of a switch
appears in Fig. 1. The software processes that

manage signaling reside in the controller.

In today�s networks, 10 Gbps transmission

links are coming into wide-spread use. Signaling

capacity, however, has not kept the pace––for ex-

ample, a capacity of 3K calls/s (setups and tear-

downs) is quite good for an ATM switch. A 10

Controller
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Links Links

Output

Capacity in calls

Capacity in calls/sec

Fig. 1. Representation of a telecommunication switch.
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Gbps link can carry 128K simultaneous (uncom-

pressed) telephone conversations; if such a link is

run at 80% utilization (with telephone traffic only),

there will typically be around 100K calls in pro-

gress. With an average call holding time of 5 min

(¼ 300 s) per call, this means that a switch will
have to process about 330 call setups and tear-

downs per second for a single link. Thus a switch

with a 3K calls/s signaling capacity could not

support 10 links, each with 10 Gbps transmission

capacity, with the offered load described above. As

terabit switching fabrics become available, we ex-

pect the signaling capacity of such systems to lag

behind.
Naturally, signaling capacity of switches and

routers will evolve along with link speeds and

switching fabric capacities. However, we see the

following motivation for our view of call process-

ing capacity as a scarce resource:

• Migration of traditional telephony services to-

wards softswitch architectures promises to place
new demands on broadband switches and rou-

ters. Control-plane interworking of softswitch

components with traditional telephone equip-

ment is complex and inevitably consumes time.

Thus acceptable call setup latencies will be dif-

ficult to maintain.

• Compression schemes for delay-sensitive traffic

types (such as voice and video) are improving
and are becoming more widely deployed. Of

course, compressed streams require less trans-

mission bandwidth than uncompressed streams.

But the per-connection signaling requirement

may not decrease (indeed, it may increase be-

cause of added sophistication).

• Effective techniques for reducing signaling load

could extend the useful lifetime of older
switches and routers whose signaling capacity

is inadequate for the emerging mix of services.

In this paper, connection caching will refer to

delayed connection teardown: when a call com-

pletes, the connection is retained. Network re-

sources associated with this cached connection are

still reserved, but are unused. A new call request
can be bound to a cached connection if (and only

if)

(1) the network entry and exit points are the same

as those of the initial request (i.e. the request

for which the connection was originally set

up),

(2) the resource requirements are the same as
those of the initial request on each of the

switches and links involved.

In this paper, we will assume that any two

connections that traverse a given link or switch

have identical resource requirements on that link

or switch. Thus, in our model, requirement 1 is the

only prerequisite for reuse of a cached connection.
We will refer to the reuse of a cached connec-

tion to carry a new call as a cache hit. Each cache

hit avoids the effort of a teardown and subsequent

setup procedure. Referring to the network of Fig.

2, suppose a user at switch A calls a user at switch

B and the associated connection is cached when

the call completes. The next time a user at A calls a

user at B, the call request will be bound to the
existing connection. Establishing this binding re-

quires some effort on the part of switches A and B

(although arguably less than that involved in

teardown and subsequent setup). However, tog-

gling an A–B connection between active and ca-

ched states involves no state change on the link

connecting switches C and D and therefore places

no processing load on the controllers at C and D.
This is the main benefit of caching: signaling load

is reduced.

The main drawback of caching is that it tends to

decrease throughput. Throughput is the expected

number of calls accepted per unit time. A

A

E F

B

C D
Users at E

Users at A

Fig. 2. Sample network.
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connection request which does not have the same

requirements as the original connection (e.g. an E–

F call request in the network of Fig. 2) may be

blocked because of the resources consumed by

cached connections.

To summarize, the fundamental trade-off of
connection caching is reduced signaling load

(which is of course desirable) at the expense of

reduced throughput.

1.2. Previous work and comparison with route

caching and web caching

A connection is an end-to-end allotment of
network resources. When a connection is cached,

these resources remain reserved, and associated

with one another as an end-to-end entity. Thus

connection caching is very different than other

caching schemes, such as route caching (which is

studied in [1,8], for example). In route caching, a

network device stores results of routing calcula-

tions in an internal table. Route caching schemes
try to make intelligent decisions about when to

(re-)compute routes and/or which routes will be

discarded when storage constraints force such

discards. Whether a network element keeps or dis-

cards a routing table entry has no effect on other

network elements (at least, it has no direct effect).

Tearing down a connection, on the other hand,

typically changes the state of many network ele-
ments. Note also that route caching does nothing

to reduce signaling overhead for setup and tear-

down procedures, but only addresses delay asso-

ciated with route computation.

Our work is also significantly different from web

caching. As is the case with connection caching,

web caching schemes aim to reduce overhead by

achieving high hit ratios. Moreover, many well
known schemes provide effective caching on the

World Wide Web [4]. Thus one may ask whether

we can, by treating each connection as an object,

apply a web caching scheme to achieve our goal of

reduced signaling load. That is, based on some

metric, why not bump the lowest-valued connec-

tion from the chunk of cached connections and

cache a new connection with higher expected
value? Web caching schemes (as exemplified by

LRU and generalizations such as LFU, GD-size

and Hybrid policies [3,5]) could conceivably be

applied in the connection caching context. Sub-

stantial modification would be required, however.

Unmodified, the web caching replacement pol-

icies mentioned above do not reduce signaling load

at all because of frequent bumping and replacing
actions; this point stands out when we examine an

LRU-like policy in Section 1.3. Second, current

web caching schemes fail to provide intuition on

how to determine the number of each connection

type that should be cached: in web caching the

cache buffer is fixed and an object will have at most

one copy in the cache. In connection caching, the

‘‘number to cache’’ is critical: each additional ca-
ched connection of one type means less available

bandwidth (and thus potentially higher blocking

probability and signaling rate) for other types of

connections. So the dynamic decision on the

number to cache is one of the keys to the trade-off

between blocking and signaling. Thus it is clear

that connection caching and web caching indeed

address different scenarios. Our simulations show
that our scheme has the same desirable properties

in the connection caching scenario as LFU has in

web caching, even though the starting points for

the two schemes are very different. Specifically, our

approach favors connection types who have

higher arrival rate. Moreover, our scheme could be

easily modified to incorporate the consideration of

size and value into connection caching, which is
similar to GD-size and Hybrid�s approach in web
caching.

To the best of our knowledge, connection

caching has received very little attention in the

literature. In a recent paper [11], Serbest et al.

study the performance of a connection caching

scheme with adaptive timeouts.

Lippmann�s 1975 paper [7] stimulated interest in
the MDP framework as a tool in the analysis of

queueing systems. Our analysis is similar to that

supporting the use of trunk reservation in network

routing mechanisms to increase revenue [6,10].

1.3. Caching policies

Having motivated the use of caching, we turn to
the question of what caching policy to employ. To

that end, we ask
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(1) Under what circumstances should an ‘‘out-

going’’ connection be cached?

(2) How long should an unused cached connec-

tion be retained?

In the next two sections, we will consider gen-

eral state-dependent caching policies, analyze these

policies using MDP machinery, and demonstrate

that there are ‘‘good’’ policies with some simple

structural properties. Before doing so, however, we

discuss candidate caching schemes and argue that

our study of state-dependent caching is worth-

while.
We emphasize that none of the schemes con-

sidered here set up cached connections prior to

experiencing demand. That is, the only sort of

decision that leads to the existence of a cached

connection is a decision not to tear down a con-

nection upon completion of the associated call.

(1) Always cache + LRU bumping of cached con-

nections. As the nomenclature suggests, when-

ever a call completes, its connection is cached.

For arrivals, the ‘‘flowchart’’ is as follows.

(a) An incoming call request is served using a

cached connection with appropriate net-

work entry and exit points if one is avail-

able.

(b) Otherwise, if sufficient idle capacity is
available, a connection setup is performed

in order to carry the call.

(c) Otherwise, we try to bump cached connec-

tions in least recently used (LRU) fashion

to free sufficient resources for the incoming

call request. If this last option fails, the call

is blocked.

Note in particular that we do not preempt ac-
tive connections in this policy (or in any other

policy studied in this article).

On the surface, the ‘‘Always cache with

LRU bumping’’ scheme has an appealing sim-

plicity, and there is no throughput penalty un-

der this policy. The problem with this policy is

that it is ill suited to networks with distributed

control. Referring to the network of Fig. 2,
suppose an E–F connection request wants to

‘‘bump’’ an A–B cached connection. Then E

must communicate its desire to A. Further-

more, A must notify E once the connection

teardown procedure is complete. In a sense,

this re-creates the signaling overhead that we

hope to ameliorate with caching. Therefore

we eliminate this approach from further con-
sideration.

(2) Limit cache size. In this policy, we cache out-

going connections subject to a per origin–

destination pair (per O–D pair) limit on the

number of cached connections. This should

limit the overall throughput penalty due to

caching, while still reducing signaling load.

The problem with this scheme is twofold:
(a) One must find appropriate settings for

each of the O–D pair limits.

(b) This scheme is not responsive to changes

in the distribution of traffic load among

O–D pairs (unless the O–D pair limits

are updated).

(3) Timeout-only policy. Always cache but place a

timeout on each cached connection. This ap-
proach also limits the throughput penalty

due to caching. We see three problems with

this approach:

(a) Finding appropriate settings for timeout(s).

(b) Unless the timeouts are very well tuned,

low-demand O–D pairs can experience dis-

proportionately high blocking rates.

(c) Cache sizes for individual O–D pairs are
allowed to vary widely, potentially increas-

ing blocking and reducing stability.

(4) State-dependent caching with timeouts. Here we

make each cache/release decision based on sys-

tem state. The system state will include the

number of cached and active connections for

each O–D pair. In a complex network, the

paths followed by these existing connections
may also need to be included in the state infor-

mation.

By introducing this class of policies, we are at-

tempting to combine the virtues of policies 2

and 3 and generalize the framework for addi-

tional flexibility. The problem with this ap-

proach is that, due to the size of the state

space, state-dependent policies can potentially
be extremely complex. Our goal is to find sim-

ple design heuristics that produce good perfor-

mance.
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We are seeking an approach that is suitable for

networks with distributed control and that adapts

well to changing traffic loads; the first scheme has

already been eliminated. We argue that timeouts

are necessary to achieve our goals, and that the

second candidate scheme (limit cache size) should
also be removed from consideration: for example,

if an O–D pair becomes inactive for a period of

time, any cached connections for that O–D pair

remain in place throughout that period, regardless

of its duration. To address this, the per O–D pair

limits would have to be frequently updated, and

such a scheme would become very difficult to ad-

minister.
We will return to the timeout-only policy (third

in the list) when we discuss simulation results in

Section 5.

2. A single-link model

We now focus our study on the performance of
caching on a single link. We abstract the network

context of the previous discussions as follows: each

O–D pair will be represented by a distinct stream

of arriving call requests. Each of these arrival

streams will be regarded, in our single-link model,

as originating from a distinct user type. To clarify

this abstraction, we return to the example network

of Fig. 2. Link C-D ‘‘sees’’ arrival streams from
four user types. This is because four O–D pairs

(namely, A–B, A–F, E–B and E–F) contend for

transmission capacity on link C–D; these O–D

pairs map to the four user types mentioned above.

Here, then, is the general description of our

model. A single transmission link having a trans-

mission capacity of C connections is shared by N
types of users. For N ¼ 2, our link is schematically
represented in Fig. 3. The user types differ in that a

cached connection can be reused by an incoming

request if and only if the user for which the con-

nection was originally set up is of the same type as

the currently requesting user. (Here we remind the

reader of our assumption that each call requires

the same transmission capacity on our link re-

gardless of the user type.) Note that if there is only
one user type sharing the link, cached connections

are always reusable, and we see that caching does

not increase blocking. Thus, in this case, connec-

tions for calls completing service should always be

cached, and there is never an incentive to tear

down a cached connection. This yields a regime in

which the long-term average rate of call setups is 0

and throughput is constrained only by link trans-
mission capacity. Thus N ¼ 2 is the first interesting
case.

Transmission capacity for a single connection

(a.k.a. a call) will be called a channel. The arrival

processes are independent Poisson processes with

rate kn for type-n users, n ¼ 1; 2; . . . ;N . Call
holding times are independent identically distrib-

uted exponential random variables with rate 1. We
formally define signaling rate to be the steady state

average number of call setups/teardowns required

per unit time; throughput is the steady state av-

erage number of calls accepted per unit time.

Without caching, each channel is either idle or

in use by a type-n user, n ¼ 1; 2; . . . ;N . Arriving
requests, regardless of user type, are blocked if and

only if there are no idle channels in the system.
Since Poisson arrivals see time averages, all types

of users experience the same blocking probability.

Thus, without caching, the system is simply the

M=M=C queue; signaling load and throughput are
easy to calculate using the Erlang-B blocking

probability.

When caching is enabled, each channel can be

idle, in use by a type-n user (n ¼ 1; 2; . . . ;N ), or
cached for type-n users (n ¼ 1; 2; . . . ;N ). When a
type-n user completes a call, the occupied channel
can enter the idle state or the ‘‘cached for type-n
users’’ state. In the latter case, an incoming call

request can use that channel if and only if the re-

quest is made by a type-n user. At the time a
connection enters a cached state, a timer is started;

if no request by the right type arrives before the
timer expires, the channel enters the idle state (i.e.

the connection is torn down and the channel can

be used by any user, regardless of type). The

λ
   1

λ
   2

Capacity C

Fig. 3. Single link with resource contention.
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duration of the timer can be random or deter-

ministic; in either case, it is governed by a timeout

parameter.

Note that, with caching enabled, the ability of

the system to satisfy an incoming call request de-

pends on the user type, so the different user types
do not generally experience the same blocking

probability. The state of our caching-enabled sys-

tem will be indicated by a 2N -tuple of the form
ðun; cnÞNn¼1, where un is the number of active type-n
connections and cn is the number of cached type-n
connections, n ¼ 1; 2; . . . ;N .
Ideally, we would like to solve the following

generic problem:

Caching optimization problem. Let C denote the

maximum signaling rate that the system can sus-

tain. For fixed values of the arrival rates

k1; k2; . . . kN , maximize throughput subject to the

constraint that the signaling rate does not exceed C.

What are the decision variables in this optimi-
zation problem? The discussion of caching

schemes from the previous section suggests at least

two alternatives. We could decide that, whenever a

call completes, we will always cache the connec-

tion. In this case, the timeout parameters (which

would vary depending on the user type, say) would

be the decision variables. Alternatively, we could

fix a single timeout parameter for all user types
and, whenever a call completes, decide whether to

cache or tear down the connection based on user

type and system state. This paper concentrates on

the second option, although we will briefly return

to the first option in Section 5. More complex

schemes can certainly be imagined (e.g. allowing

timeouts to depend on system state as well as user

type in the first approach above, allowing timeouts
to depend on user type in the second approach, or

allowing timeouts to be adaptive in either ap-

proach). However, such complex schemes would

be extremely difficult to analyze (even in the single-

link case) and, if implemented, might prove

equally difficult to tune. In the network context,

one would face the additional problem of different

‘‘optimal’’ timeouts for the individual links con-
tained in each route; note also that more complex

schemes imply more network overhead, since there

is more information to distribute and keep track

of. Moreover, we are primarily concerned with a

high-arrival-rate, low-blocking regime. In such a

regime, state-based caching with fixed timeouts

provides a rich space from which to select optimal

or near-optimal decisions.
In our effort to maximize throughput, we will

naturally seek to achieve a low average blocking

probability, but this alone gives no guarantee of

near-equal blocking probabilities for all user types

(although near-equal blocking is clearly a desirable

feature). In our generic problem statement, we

have not included a constraint that all user types

experience equal blocking probabilities; this would
add to the difficulty of analyzing the problem and

greatly restrict the feasible set. In the simulation

results of Section 5, however, we do scrutinize the

per-user-type blocking performance of our pro-

posed family of policies.

3. Markov decision process approach

We now turn to the framework of Markov de-

cision processes (MDPs). Our goal is to identify

structural features of optimal state-dependent

policies, and to design simple, near-optimal heu-

ristic policies using this information. Because of

the difficulty of solving constrained MDPs, the

explicit signaling rate constraint of the previous
section is replaced by a penalty term in the ob-

jective function (details will be forthcoming when

we discuss the reward structure of our MDP). In

our MDP model, the timeouts are independent

exponentially distributed random variables, gov-

erned by a single mean that does not depend on

user type.

In Section 1.3, we argued the merits of basing
each cache vs release decision on the current system

state. As the capacity of the link increases, the state

space�s cardinality grows rapidly and the space of
policies becomes rich. The MDP framework offers

efficient iterative techniques, such as policy itera-

tion, to determine an optimal policy. We have im-

plemented policy iteration numerically and have

used this implementation to study the form of op-
timal policies for N ¼ 2 user types and small values
of the capacity C (on the order of 10–15).
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Before discussing our numerical results, we set

out the particulars of our formulation.

3.1. Markov decision process formulation

Our model is a priori in continuous time. Fol-
lowing Lippmann [7] and other authors, we employ

uniformization to transform our continuous time

Markov chain, and its associated reward structure,

to an equivalent discrete time form. We now de-

scribe the resulting discrete time MDP. We are

interested in the long-term average reward opti-

mality criterion (also called the ergodic criterion).

We do not give details of the MDPmachinery here;
Chapter 11 of Puterman�s book [9] is a good ref-
erence. Our notation is adapted from Puterman�s.
More detail on the specific model presented here

appears in [12].

To completely characterize our MDP, we need

to describe the model parameters, the state space,

the family of policies under consideration, the

event and transition structure, and the reward
structure. For convenience, we will give the de-

tailed description for N ¼ 2 user types; for N > 2
user types, the notation will remain consistent, so

no confusion should arise.

Parameters of the model. As before, ki will

denote the arrival rate of type-i users, i ¼ 1; 2,
and the call holding time will be exponential with

mean 1 regardless of user type. Timeouts for
cached connections will be assigned an expo-

nential distribution with mean s (in general, s
could vary with user type; in this study, we as-

sume all cached connections share the same

timeout).

State space. The state space for the capacity-C
system, S ¼ SC, is the set of four-tuples ðu1; c1;
u2; c2Þ of non-negative integers for which u1þ
c1 þ u2 þ c26C. The state variables ui and ci rep-
resent the number of active and cached type-i
connections, respectively, i ¼ 1; 2. Occasionally,
we will use the notation uiðsÞ:¼ the number of
active type-i connections in state s 2 S, and
analogously for ciðsÞ, i ¼ 1; 2.

Policy space. In our model, the decision whether

to cache a connection upon call completion is the
only type of decision we allow to vary from one

policy to another.

Formally, a policy d is a map S ! f0; 1g 

f0; 1g. Suppose the current state is s 2 S. Writing
dðsÞ ¼ ða1; a2Þ, when a type-1 call completes, we
cache the connection if a1 ¼ 1 and tear it down if
a1 ¼ 0. The second coordinate a2 is analogously a
Boolean value indicating whether we will cache the
connection when a type-2 call completes service. If

the next event is not a type-i service completion,
the value of ai has no effect, i ¼ 1; 2. Note that ai
has no meaning when uiðsÞ, the number of active
type-i connections in the current state, is 0. Our
convention will be to force ai ¼ 1 whenever

uiðsÞ ¼ 0, i ¼ 1; 2.
A word on terminology is in order: we will not

distinguish between the decision rule d and the
policy ‘‘d1’’ which follows decision rule d at each
decision epoch. It is well known (see [9], for ex-

ample) that there is always a stationary optimal

policy (i.e. a policy d1 for some d of the form
introduced in the last paragraph) whenever state

and action spaces are finite. Note in particular that

we only have to consider deterministic policies.
Events and transitions. Our MDP features the

following events, further distinguished by the as-

sociated user type: arrivals, service completions

and cache timeouts. The possible state transitions

are determined by the following rules:

• Service completion events are the only epochs

where we allow ourselves a choice; all of the
other branches in the MDP ‘‘flowchart’’ depend

only on the state of the system. Of course, upon

service completion, the choices are ‘‘cache the

connection’’ and ‘‘tear down the connection’’.

• Connection setups are only performed in re-

sponse to explicit user requests, and only when

no cached connection of the appropriate (user)

type is available.
• Calls are never blocked when an idle channel is

available (a channel is idle if it is neither in ac-

tive use nor cached).

Reward structure. A reward qi is received each

time a type-i call is accepted, i ¼ 1; 2. Throughout
this study we will have q1 ¼ q2 ¼ q. A cost c is
paid out each time a call setup is performed.
Therefore, in state s, the reward for a type-i arrival
equals
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q if ciðsÞ > 0;
q � c if ciðsÞ ¼ 0 and

u1ðsÞ þ c1ðsÞ þ u2ðsÞ þ c2ðsÞ < C;
0 if ciðsÞ ¼ 0 and

u1ðsÞ þ c1ðsÞ þ u2ðsÞ þ c2ðsÞ ¼ C:

8>>>><
>>>>:

ð1Þ
The presence of the cost c encourages caching: as
often as possible, we want arriving type-i connec-
tion requests to ‘‘see’’ a system with state variable

ci > 0, and thereby reap full reward q (as opposed
to q � c or, in the worst case, 0). Of course, caching
on behalf of user i increases blocking for the other
user (and blocked arrivals garner 0 reward).

Let us aggregate the rewards across states,

looking at the q and c terms separately. The
‘‘revenue’’ q is received whenever a call request is
accepted; the penalty c is deducted whenever a call
setup procedure is performed. Therefore, for the
ergodic criterion (i.e. the long-term average re-

ward), the objective function translates to

q 
 throughput� c 
 ðcall setup rateÞ: ð2Þ

The second term is a ‘‘Lagrangian’’ penalty term;

this is inserted in the objective function in lieu of

an explicit constraint on signaling rate. Note that,
had we chosen to penalize call teardowns sepa-

rately (as detailed above, we ‘‘charge’’ only for

setups), the model would not have been enriched.

To see this, observe that the call setup and tear-

down rates are the same because

06 total # of setups� total # of teardowns6C

at all times along all sample paths. Thus, assessing

a per-teardown cost would merely amount to ad-

justing the constant c in Eq. (2).

3.2. Numerical evaluation of the discrete Markov

decision process and observations on optimal policies

Intuitively, we expect that there will always be

an optimal policy d
 that is a threshold policy:

whenever we have two states s and ŝs and a user
type i such that

• if the system is in state s and the next event is a
type-i service completion, policy d
 caches the

associated connection;

• states s and ŝs are identical everywhere except in
the ci coordinate;

• ciðsÞ > ciðŝsÞ;

then d
 also caches whenever the system is in state
ŝs and the next event is a type-i service completion.
If d
 is a threshold policy, it follows that there is a

value c
i ¼ c
i ðsÞ such that, if the next event is a
type-i service completion, d
 caches if and only if

ciðsÞ is less than or equal to the threshold value
c
i ðsÞ. The threshold value may depend on the type,
i, of the departing user and on the other state
variables (that is, the state variables other than
ciðsÞ itself).
Suppose we have an optimal threshold policy.

Now we fix the user type i and ask: ‘‘does the
threshold c
i ðsÞ depend on the current state s in a
simple way?’’ In particular, is it sensitive to the

number of connections that are currently cached

for the other user type (e.g. does a given user type�s
threshold increase with the other user type�s cache
size?) This question leads us to identify some

simple classes of threshold policies as follows.

We define an active + cached policy to be a

threshold policy in which the threshold for user

type i is a function of

XN
n¼1

unðsÞ þ
XN

n¼1;n 6¼i

cnðsÞ

for i ¼ 1; 2; . . . ;N . (As before, s denotes the cur-
rent state of the system.) Further, we define an

active-only policy to be a threshold policy in which

the threshold for user type i depends only on

XN
n¼1

unðsÞ

for i ¼ 1; 2; . . . ;N . Lastly, we say that a threshold
policy is a constant threshold caching policy

(CTCP) if, for i ¼ 1; 2; . . . ;N , the threshold for
user type i is independent of s (note that this def-
inition still allows the threshold to depend on the

user type). Note that we give these definitions for
arbitrary N , although we have restricted ourselves
to N ¼ 2 user types in this section for ease of ex-
position.

We implemented policy iteration numerically

using Octave [2]. All of the optimal policies were of
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the threshold type as expected. We applied our

policy iteration code to numerous examples in

which there were N ¼ 2 user types. Most of these
runs featured link capacity C ¼ 10 or C ¼ 12.
Sifting through the Octave output in various ways,

we found that the optimal threshold c
i is ap-
proximately linear in u1 þ u2. We state this care-
fully in the following empirical observation.

Observation 1. For N ¼ 2 user types and for
i ¼ 1; 2, the optimal threshold c
i is near-constant for
fixed values of u1 þ u2. More precisely,

• Given a constant U , we often find that c
i ð�Þ is
constant on SU , the ‘‘level set’’ of states s for
which uiðsÞ > 0 and u1ðsÞ þ u2ðsÞ ¼ U .

• The threshold c
i never varies by more than 1 on
any level set SU . That is, jc
i ðsÞ � c
i ðtÞj6 1
whenever the states s and t share the same value
of u1 þ u2 and uiðsÞ; uiðtÞ > 0.

• The threshold c
i is constant when viewed as a
function of the other user type’s cache size, hold-
ing u1 and u2 fixed.

Thus the active-only class of policies (i.e. the set
of policies for which the threshold ĉci is a function of
u1 þ u2) contains near-optimal elements; moreover,
the subcollection of policies for which the threshold
ĉci is a decreasing linear function of u1 þ u2 also
contains near-optimal elements.

Fig. 4 illustrates the content of Observation 1

for a specific example; we emphasize that this ex-

ample typifies the pattern seen in our suite of runs.

We have (arbitrarily) chosen to plot the optimal

caching behavior for user type 1. On the set of

states for which u1 þ u2 ¼ 5, the threshold c
1 varies
but is always 3 or 4. This is the meaning of the
half-shaded dot at coordinates (5,4) on the dia-

gram; compare this to u1 þ u2 ¼ 4, where the dia-
gram indicates a constant threshold of 4. We have

marked a threshold of )1 at u1 þ u2 ¼ 12 (the link
capacity) to indicate that outgoing connections

are not cached here. This is in contrast with the

threshold of 0 at the u1 þ u2 value 11, which in-
dicates that an outgoing connection should be
cached only if c1 ¼ 0. As a final point of clarifi-
cation, the absence of a dot at any coordinates

means ‘‘do not cache when the system is in this

(family of) state(s)’’.

Why should an optimal threshold policy have

the features described in Observation 1? First, let

us try to understand why caching decisions for
each user type should be independent of current

cache size for the other user type. When the cache

size for one user type is large, why isn�t there added
incentive to cache connections for the other user

type? The paradigm for our optimization model is

that the system controls the caching policy in a

manner that is transparent to the users; we are not

modeling a competitive framework, in which each
user type is willing to raise the other type�s
blocking probability in order to secure its own

access to resources. The throughput term in our

objective function encourages us to limit caching

when it threatens high blocking probability for any

of the user types� input streams. Lastly, when the
cache size for a given user type is already sub-

stantial, adding another connection to the cache
intuitively gives little marginal reduction in sig-

naling rate (so, loosely speaking, states with

‘‘large’’ cache sizes will not generally be recurrent

states in optimal policies).

The fact that optimal thresholds decrease as a

function of the total number of active connections

also makes sense. When there are relatively few

active connections, sizeable caches do not ‘‘cost’’
much (in terms of increased blocking probability).

-1

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12
u1+u2

c1

always cache
partial caching

Fig. 4. Plot of optimal policy for user 1 with parameters as

follows: link capacity C ¼ 12, N ¼ 2 user types with arrival
rates 5 and 4, per-carried-call revenue 1.0 and per-setup cost

0.03.
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When there are many active connections, however,

throughput will be compromised unless the non-

active channels are, in large part, available to all

user types.

3.2.1. Linear threshold caching policy and imple-

mentation aspects

So far, we have analyzed the single-link case

where multiple connection types with Poisson ar-

rivals of possibly different arrival rates and the

same bandwidth requirement share a link with

capacity C. The objective was to determine a

caching policy that reduces the overall signaling

rate without compromising system performance,
i.e. blocking probability. Moreover we note that it

is desirable that such a policy be fair to the various

connection types, i.e. balance the perceived

blocking probability and signaling rate. The MDP

solution suggests that a state-dependent threshold

on the number of cached connections is close to

optimal in the single-link case.

In light of the above, we propose the following
linear threshold caching policy (LTCP) for the

single-link case. A link keeps the following state

information: its capacity C, the number of con-
nection types N , the number of ongoing connec-
tions for each type un, n ¼ 1; . . .N and the number
of cached connections of each type cn, n ¼ 1; . . .N .
For each type n, there is a state-dependent

threshold that is linear in the total number of
ongoing connections, Tn ¼ an � bn

PN
i¼1 ui. Given a

departure of a connection of type n, if the current
number of cached connections cn exceeds Tn, i.e.
cn P Tn, then the connection is not cached; other-
wise, it is cached. Note that our LTCP is a special

case of an active-only policy as defined in the

previous section.

Although the parameters ðan; bnÞ, n ¼ 1; . . .N
might be determined based on approximating the

optimal policy given by the MDP analysis dis-

cussed above, in practice we propose the following

approach to setting these parameters.

First we assume all connection types will share

the same parameters ða; bÞ. We will show via

simulation in the sequel that this does not com-

promise our two objectives––performance and
fairness. Intuitively, when we apply the same

threshold policy to connection types having dif-

ferent arrival rates, one might expect a bias against

types with higher arrival rates. However, such

connection types are likely to grab more resources

and thus equalize such ‘‘unfairness’’.

Second, we choose b ¼ a=C. The intuition here
is that when the link capacity is full of ongoing
connections, no caching should be allowed. The

other parameter a is set within the range from
1:25C=N to 1:5C=N , which offers good trade-offs
between blocking probability and signaling rate in

all the simulations we have run. Details will be

discussed in the simulation section.

4. Network model

In the single-link case, we can solve for the ex-

act optimal policy. However in a network, when

applying such a caching policy, the optimal policy

is hard to obtain. To extend our single link caching

policy to a network, we propose a natural exten-

sion. The idea is to consider each link on a con-
nection�s route independently. Upon connection
departure, each link decides whether it should

cache the connection or not based on its own state

information, i.e. makes a decision based on a sin-

gle link caching policy. If all links along this route

agree to cache the connection, the connection is

cached; otherwise, it is not cached.

Although the idea is simple, there are several
issues that need to be addressed in the network

case.

First, how do we coordinate end-to-end deci-

sions? Although there are different ways to im-

plement an end-to-end decision, a naive design

may actually increase the signaling load among

links and degrade the performance. Because the

goal of the caching policy is to trade bandwidth
utilization for lower signaling rate, any factor that

will potentially increase the signaling should be

addressed with care.

Second, how do we configure the caching policy

on each link, given that we may not know the

exact number of connection types (i.e., routes, and

bandwidth requirements, etc.) going through the

link? We need to somehow estimate those param-
eters that were given in our single-link analysis.

How robust is the policy in the presence of esti-

mation errors?
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Third, will interactions between a dynamic

caching policy and a given routing policy lead to

poor performance? For example, it is well known

that alternative routing may result in meta-stable

states [6] that degrade the system throughput.

Similar phenomena may be alleviated by our
caching policy alone or in combination with a gi-

ven routing policy.

Next we briefly discuss how such a policy would

be implemented, and might impact performance.

The proposed caching policy has the following

characteristics:

• Caching decisions are made upon connection
departures.

• If a connection is cached, all the resources along

its route will be held.

• Only connections on shortest path routes in

terms of hop-count will be candidates for cach-

ing, i.e., connections following alternative,

longer routes will not be cached.

• A connection is cached if and only if each link
along its route agrees that it should be cached.

If any of the links fails to do so, the whole route

will be torn down without caching.

• Each link makes its own decision whether to

cache a connection or not based on the LTCP

policy.

This policy addresses the above noted problems
associated with implementing network-level cach-

ing. We observe that there are two ways to obtain

the necessary information for the caching policy:

by coordinating caching decisions via signaling, or

by using possibly outdated link state information

at the source. If we use the first solution then we

save the setup cost, but implementing the caching

policy may have a signaling overhead almost
equivalent to that of tear down. Therefore we be-

lieve that the second approach is preferable for

implementation as long as network loads are suf-

ficiently stationary. However, we note that for

connections managed via the second approach, the

source needs to acquire caching thresholds for

links along the route upon connection setup (by

‘‘piggybacking’’ additional information on signal-
ing messages that acknowledge the completion of a

setup, which would increase the size of certain

messages but would not require additional sig-

naling exchanges).

To configure the caching policy on a given link,

we will only consider caching connections routed

on shortest path routes. The rationale for doing

this is as follows: the implied cost associated with
cached connections on non-shortest path routes

may not warrant caching. Alternative routed

connections tend to consume more resources. In a

system with reasonably heavy traffic on every link,

the implied cost, which is associated with the

blocking probabilities of all other traffic sharing

bandwidth along this route, could be much higher

than the benefit of caching such a connection.
Another reason is because our caching policy is

state dependent. In a network with a complex to-

pology, keeping the information of all possible

routes can be cumbersome and the approach

would not scale. Restricting caching to connec-

tions on shortest path routes reduces the amount

of state information that needs to be stored.

In a large network, it may be hard in practice to
determine whether a connection is routed on a

shortest path route. Here we assume that all the

shortest path routes for given source/destination

pairs are well known to sources, i.e., can be pre-

computed based on the network topology.

Finally, we claim that favoring the shortest path

routes in our caching policy will have the similar

effect to that of ‘‘trunk reservation’’, which can
enhance the throughput. By reserving more re-

sources, i.e. caching connections routed on the

shortest path routes, there is less of a chance that

the system will fall into the meta-stable states

where alternative routed connections are dominant

and connections are experiencing high blocking

probability. This claim matches the observations

in our simulations.
Scalability. One of the main motivations for this

work is to find ways of reducing signaling load

within a softswitch. That is, we wish to ease the
burden of setting up and tearing down a connec-

tion between ingress and egress nodes (we will call

these media gateways) each time a call request ar-
rives from the outside world. In order to be useful,

our scheme must be scalable. The main issue here
is the size of the state space associated with each

link: we need to make sure that this size is man-
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ageable for the intended application, or in other

words to make sure that the number of connection

types that might be cached on any given link is not

exhorbitant. We will regard ‘‘connection type’’ as

synonymous with ‘‘O–D pair’’ in the following

sense: if two shortest path connections for the
same O–D pair share a common link, that link will
not distinguish between the two connections but

will instead count them as being of the same type

for the purpose of caching decisions. This is rea-

sonable; in particular, it does not abridge any

link�s ‘‘right’’ not to cache a connection based on
the amount of resources it has allocated to the

associated O–D pair. Now the total number of
connection types that traverse our softswitch is

clearly an upper bound for the number that might

be cached on any given link. The former quantity

is quadratic in n, the number of media gateways
(it is

�
n
2

�
). It is important to note that the number

of connection types does not depend on the num-
ber of switching nodes residing in the ‘‘interior’’ of

the softswitch fabric (i.e. nodes that are not in-
gress/egress points). The number of media gate-

ways is rarely large; in fact 10 is a substantial

number in today�s softswitch deployments. This is
because

(1) For a number of years to come, softswitches

will be deployed as islands in a circuit-switched

world (and will therefore be required to con-
duct signaling interactions with the ‘‘circuit-

switched world’’ on a per-call basis).

(2) Control of a large number of media gateways

presents scalability problems of its own. (This

is particularly applicable to large telephone

service providers, who want each media gate-

way to serve a large number of end users,

and for whom reliability is absolutely para-
mount. A small, specialized service provider

might want to deploy a softswitch featuring

media gateways that are smaller but much

more numerous; our scheme is less suitable

for the latter scenario.)

In the softswitch telephony context discussed

above, we have assumed that there is only one
category of traffic (i.e. voice). So the total number

of connection types is the same as the number of

O–D pairs. If this assumption is removed (e.g. our

softswitch supports video sessions as well as voice

calls), the number of connection types scales lin-

early with the number of traffic categories: no link

will carry more than
�
n
2

�
c
�
n
2

�
connection types,

where c is the number of traffic categories in a
heterogeneous network. Moreover, the upper

bound given here does not tend to be tight: we

would not expect every connection type to appear
on every link. Indeed, we never cache a connection

when it is not a shortest path. As a concrete ex-

ample, assume that a large softswitch matches the

NSF T1 topology given in Fig. 10. The MI-UT

link is traversed by shortest paths for 23 of the�
16
2

�
¼ 120 O–D pairs; this is the maximum of any

link.

Suppose voice calls or video sessions traverse

multiple softswitches. This scenario takes place

when forced by the scalability limitations noted in

items 1 and 2 above, or when softswitches owned

by two different service providers are intercon-

nected. In this case, the softswitches would inde-
pendently implement separate, non-interacting

caching policies: although a softswitch might

choose to cache the segment of a multi-switch

bearer path that traverses its fabric (e.g. in the

form of an MPLS Label Switched Path), segments

traversing multiple softswitch fabrics would never

be cached.

5. Simulation

In order to evaluate the performance of the

caching policy developed above, we ran two sets of

simulations. Throughout this section, timeouts are

deterministic; whenever more than one cached

connection is available to serve an incoming call
request, we choose the ‘‘oldest’’ connection, i.e. the

connection that is closest to timing out.

The first set of simulations corresponds to the

single-link case with various parameter setups. The

simulations are intended to illustrate that the lin-

ear threshold caching policy (LTCP) class is better

than other classes of policies, such as the constant

threshold caching policy (CTCP) class and the
active + cached class (these were defined in Sec-

tion 3.2); we present graphs summarizing our
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results. The superiority of LTCP to the timeout-

only approach (in which outgoing connections are

always cached––this was introduced in Section 1.3)

was also confirmed by our simulations. In the in-

terest of space we do not present details of our

timeout-only simulations beyond briefly describing
our setup as follows: all of the user types had

identical arrival rates, a symmetric situation in

which there was no apparent reason for timeout

parameters to vary with user type. Thus each

simulation was configured with a single timeout

parameter; in a series of simulation runs, we

searched empirically for an optimal setting of this

parameter. No parameter value, however, yielded
timeout-only performance commensurate with the

performance of a well-tuned LTCP.

The second set of simulations corresponds to

the network scenario. Our aim is to show that the

proposed generic caching policy can significantly

reduce the signaling rate without degrading net-

work utilization and validate the proposed design/

configuration heuristics for the network case. In
the network case, we will consider both static and

alternative routing schemes. In view of the scale of

soft-switch network, we only have a simple trian-

gle topology in this paper to show our key obser-

vations.

Performance was evaluated in terms of the

trade-off between signaling rate and blocking

probability. For example, in Fig. 5, the x-axis is the
signaling rate and the y-axis is the blocking prob-
ability. Each curve corresponds to the perfor-

mance achieved by a given policy as its operational

parameters change accordingly. Each point on the

curve represents the (signaling rate, blocking

probability) given a particular threshold parame-

ter; for example, CTCP(2) means that the constant

threshold of CTCP is 2 and LTCP(1.0) means that
the parameter a of LTCP, which determines the
slope of the linear threshold as discussed in Section

3.2.1, is 1.0.

5.1. Single-link case with identical connection types

Although as mentioned in Section 1.1 we as-

sume that different connection types have the same
resource requirements, they may have different

arrival rates––in this case we call the simulation

setup heterogeneous; otherwise we say it is homo-

geneous.

5.1.1. Traffic types with homogeneous loads

We consider the following setup: the link ca-

pacity C is 1000 units. There are 50 types; each has
a Poisson arrival with offered load 19 Erlangs and

a bandwidth requirement of 1 unit per connection.
Therefore the average load on this link is

50
 19 ¼ 950 < C so that the link is not over-

loaded. Four possible classes of caching policies

are considered: no caching, LTCP, CTCP and

active+cached. No caching corresponds to a point

with 100% signaling rate on the graph. We derived

a horizontal line from this point to indicate the

theoretical lower bound on blocking probability of
the single-link case given the offered load and the

link capacity.

As seen in Fig. 5, LTCP has the best perfor-

mance among all classes of policies. Given the same

blocking probability, LTCP always has the mini-

mum signaling rate. Therefore among all the

policies, this policy is the closest to optimal. For
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Fig. 5. Single-link case with connection types having homoge-

neous loads.
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example, in the region where the blocking proba-

bility is acceptable (<0.01), the signaling rate is
reduced by more than 60%. All the policies behave

similarly at the two extremes (A and B in Fig. 5).

These are not of interest to us because one extreme

has high signaling rate close to 100% due to in-
sufficient caching and the other has high blocking

probability due to excessive caching. Since the

active + cached policy has poor performance, we

will ignore it in later sections and focus on com-

paring our LTCP with CTCP.

Another advantage of LTCP is its robustness.

Its performance is relatively stable in a large range

of values for the parameter a, e.g. 20–40. This
helps in selecting a ‘‘good’’ value for the parameter

a in more complex cases. By contrast, CTCP is
highly sensitive to the parameter setting. For ex-

ample, by comparing the points CTCP(2) and

CTCP(3) in Fig. 5, we can see that CTCP has 80%

higher blocking probability when the constant

threshold is changed from 2 to 3. As shown in both

this simulation and later ones, typically a good
value for a in LTCP is between 1:25C=N and

1:5C=N . This heuristic was empirically validated in
all the cases that we considered.

5.1.2. Multiple traffic types with heterogeneous

loads

Next we simulated a link shared by multiple

traffic types with heterogeneous loads as follows:
The link capacity C is 1000 units. There are a

total of 30 traffic types with different arrival rates.

Group H has 10 types with offered load 60 Erl-

angs; group M has 10 types with offered load

25 Erlangs and group L has 10 types with of-

fered load 10 Erlangs. The total arrival rate on

this link is therefore 60
 10þ 25
 10þ 10
 10 ¼
950 < C.
In this simulation, we measured both the

blocking probability and signaling rate for each

group as well as the overall averages. As men-

tioned in the previous section, we applied the same

threshold function for all traffic types. For com-

parison purposes, the performance of traffic types

with uniform loads and the same total offered load

of 950 Erlangs is also shown in Fig. 7.
As seen in Fig. 6, there is a degree of unfairness

among different groups, but it is not very signifi-

cant. Traffic types with higher arrival rates expe-

rience higher blocking probability and signaling

rate. The amount of resources they grab cannot

catch up with their higher arrival rates, i.e. higher

bandwidth requirements. We attempted to elimi-

nate this unfairness by fine-tuning the parameter a
for different groups. However, if we modified the

policy only via the parameter a, fairness proved
difficult to achieve. Based on these and other re-

sults, we concluded that a reasonably good solu-

tion to achieve approximate fairness would be to

set the same value of a for all types. The estimation
of a ¼ 1:5C=N leads to good performance even if

traffic loads are heterogeneous. For this simula-
tion, a ¼ 1:5
 ð1000=30Þ ’ 50. In both Figs. 6
and 7, around the region a ¼ 50, the signaling rate
is reduced remarkably by 60%, and the blocking

probability remains almost the same as the non-

caching lower-bound. Unfairness among the three

groups is negligible in this operating regime.

Again, comparing the average performance for

the simulation results shown in Fig. 7, we see that
LTCP outperforms CTCP, especially in the low-

blocking regime of interest. (We comment that the
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homogeneous case in Fig. 7 has 30 user types; this

is a different curve than in Fig. 5, where there are

50 user types. For both curves the total load is 950

Erlangs.) Moreover, LTCP has similar perfor-

mance in both the case of heterogeneous traffic
and the homogeneous traffic types with the same

overall arrival rate. Therefore, we conclude that

LTCP can deal with heterogeneity without de-

grading performance or losing fairness.

5.2. Network case

5.2.1. Simple topology with fully connected 3-node

network

Our first network topology is shown in Fig. 8.

Topologies such as this, in which a small number

of switching elements are fully meshed, are not

uncommon in softswitch deployments. In the

ATM case, the nodes pictured could be performing

AAL2-layer switching, inhabiting a larger network

in which the other nodes (not shown and indeed
not of interest here) function only at the ATM

layer. We set up the simulation as follows:

Each link has a capacity 1000. Between each

two nodes, there are 10 traffic types with the same

Poisson arrival and offered load 90 Erlangs.
Therefore, without considering alternative routing,

the average load on each link is 10
 90¼
900< 1000. If any blocking occurs on the direct
path, the connection will try the 2-hop alternative

route. Blocked calls are counted for connections

that fail on both the direct route and the alterna-

tive route. As stated in the proposed caching pol-

icy, alternative routed connections are not cached.
For each link, the LTCP initializes its para-

meters a given the number of connection types on
shortest path routes. For comparison, we imple-

ment CTCP such that all links keep the same fixed

constant threshold on the maximum number of

cached connections.

The simulation results are shown in Fig. 9. The

horizontal line is the blocking probability when no
caching is implemented. As seen in Fig. 9, LTCP

again yields better performance than CTCP. Also

the proposed heuristic for setting the value of

parameter a is still good in the network case.
One difference in the network case vs the single-

link case is that the blocking probability is not

strictly decreasing in the signaling rate as the

parameter a for LTCP is varied; the no-caching
regime no longer offers a lower bound on blocking

probability in the network case as it did for the

single-link case. We argue that by caching direct

routes, we force some connections to be blocked

on their alternative routes while they could get

through when caching is not used. For this to-

pology, alternative routes will consume two times

the resources as those directly routed. Therefore
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limiting the admission of alternative routes can

reduce the overall blocking probability.
Finally, in our simulation, we did find cases

where the network transits from a ‘‘stationary’’

low-blocking state to a high blocking state, i.e. the

meta-stable behavior. Since these cases happened

only for low or zero cache levels, this suggests that

our caching policy does help to avoid such be-

havior.

5.2.2. Topology based on NSFNET T1 backbone

Finally we compare LTCP and CTCP on the

topology of the NSFNET T1 backbone shown in

Fig. 10. The simulation is set up as follows.

As before, each link has capacity 1000. Between

any two directly connected nodes, there is a

‘‘background’’ traffic type with offered load 330

Erlangs. Also across the network there are six
traffic types running through longer routes each

with offered load 330 Erlangs.

The caching policy only considers caching

connections on shortest path routes in terms of

hop-count. We ran simulations for two different

scenarios. In the first one, connections are routed

on static shortest path routes. A connection at-

tempt fails if it is blocked on its associated route.
In the second scenario, if any connection is

blocked on its shortest path route, a dynamic

routing algorithm is used to find the current

‘‘shortest path’’ where the link metrics are given by

1=residual bandwidth. A connection attempt fails
if it is also blocked on the alternative route. Again,

these alternative routes are not cached. We are

interested in the performance of the caching policy
on links that are heavily congested. With the above

loads, the link between nodes TX and MD is in

fact the most heavily loaded. The following results

assess the signaling loads on this link.

From Fig. 11, we can make two key observa-

tions. First, LTCP outperforms CTCP in reducing

signaling rate given the same blocking probability.

In Fig. 11, which shows the performance of the
two caching policies on the most heavily loaded

link, this improvement is marginal. However, in

terms of the average performance of the system,

not shown in the figure, LTCP has a much better

performance. For example, when the average

blocking probability equals 0.021, the LTCP yields

a signaling rate of 0.024 and CTCP has a much

higher signaling rate of 0.197. The reason for this
is that when links have different loads, LTCP can

dynamically adapt itself to the link state and

therefore approximate the optimal cache level

better than CTCP, which always keeps a fixed

threshold. Limited by the number of types in our

simulation, the improvement on reducing the sig-

naling rate shown in Fig. 11 is perhaps optimistic,

i.e. when more connection types co-exist on the
network, the reduction in signaling rate would be

less. However, we still can expect that in a real
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network, with a good value for parameter a, i.e.
a � 1:25C=N , LTCP will be very useful in reducing
signaling loads without compromising blocking

probability.

The second observation is that, when a caching

policy is applied along with the alternative routing

scheme, the blocking probability can be even

smaller than the non-caching case on the most
heavily congested links. The reason for this be-

havior is similar to the case in the previous simu-

lation of 3-node network. Since the number of

connections that are on shortest path routes is

dominant compared with the number of connec-

tions on alternative routes, the caching policy will

be biased against those connections on alternative

routes by reserving resources for connections on
shortest path routes and therefore yield better

average performance.

6. Conclusions

In this article, we motivate connection caching

and discuss possible schemes for deciding when to

cache an ‘‘outgoing’’ connection and when to tear

down an unused cached connection. We argue that

state-dependent caching is necessary for best per-

formance and propose a linear threshold caching

policy (LTCP) that appears to be near-optimal in

the single-link case. Through simulations, we ver-
ify that LTCP performs well in the network con-

text, and is relatively insensitive to errors in

parameter estimation. Thus connection caching

with the LTCP heuristic is a promising technique

for avoiding signaling congestion in networks that

suffer from inadequate signaling capacity.
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